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I. INTRODUCTION

Excitation of the electronic states of molecule by electron impact is
one of the simplest basic processes in molecular collision phenomena. The
importance of such excitation processes in many areas of studies has stim-
ulated considerable experimental efforts in recent years. However, the
progress in the theoretical aspects of the problem has been much slower. In
fact the status of the theory of electron-impact excitation of the electronic
states of diatomic molecules is in a rather primitive stage in comparison
with the corresponding electron-atom processes. For a few diatomic molecules

1-8

(HZ’NZ’m)’ systematic studies of the excitation cross sections for a mumber

of singlet and triplet states have been made by means of the Born approximation
and/or the modified versions of it. The modifications of the Born approximation
as introduced by 0&:hkm‘9 and by R:.ldge10 enable one to handle the exchange
interaction between the colliding and the target electrons in a simple way.
Excitation from a singlet to another singlet state can be treated either by

the first Born approximation (referred to as the Born approximation in this

paper), or by one of the modified versions when the exchange effect is included.

On the other hand one must resort to the Born-Ochkur or the Born-Rudge

approximation for excitation to triplet states. In Refs. 1 and 2, it is

suggested that Born-Ochkur approximation be used for singlet-singlet excitation,

but the Born-Rudge scheme is recommended for singlet-triplet processes. ‘
Comparison with experiments shows satisfactory agreement for a few states,

but rather large discrepancy is found for same others. Viewed as a whole, one

can only regard the Born-type calculation as a means of providing theoretical

estimates but not always cross sections of precise quantitative significance.

In the cases of singlet-triplet processes, the excitation functions generally
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peak at a few eV above the threshold and decrease steeply with increasing energy.
For many applications, the major interest in triplet excitation lies in the
near-threshold region where the cross sections are large, but this is also
the region in which the validity of the Born approximation becomes questionable.
Recently a calculation based on "the first-order many-body formula" (a form

of distorted-wave approximation) was advancedu, which is yet to be tested
against more rigorous theory. Like the Born-Ochkur and Born-Rudge approximations

before it, this method, too, takes advantage of relative simplicity in
computation but also falls short of serious theoretical justification.
Collectively, these efforts are a testimony that while the need for theoretical
cross sections is great, the means of obtaining them is restricted - no doubt,
due to the computational complexity involved in the molecular problems.

The most rigorous and systematic formalism commonly applied to the electron-

atom collision processes is the method of close coupling.lz-l? About ten

years ago a very ambitious effort of applying the close-coupling metnod to
c.-lectmn-H2 excitation was undertaken by Fajen.18 He calculated the excitation i

cross sections of the Bl)::, C]‘Hu, and EI}:; states of H2 by a multi-state close

e

coupling scheme. To make the problem tractable, Fajen neglected the exchange
interaction between the colliding and target electrons. The emphasis of his

work is mainly focused on the problem of singlet-singlet excitation in the high

and intermediate energies, particularly the effect of multi-state indirect

coupling on the cross sections of the EIZ§ state. Black and Lane!”’20 a1so
calculated the cross sections of the Bl}:; state by the close-coupling method.
The electron-exchange was approximated as an efféctive exchange potential by
the scaled Slater-Hartree-Fock form to simplify the computation.20 The latter

work was primarily concerned with the resonant excitation of the 812:; state at

low incident-electron energies (11-13 eV).




30

In this report we apply the method of close coupling to the cplect:'cn-ll2
problem with the projectile-target electron exchange included, and calculate
excitation cross sections for several triplet states as well as the Blt; state.
The theoretical formulation and the computational procedures parallel closely
those of the atomic cases with two notable differences coming from the axial
symmetry of molecule and the two-center nature of (homonuclear diatomic)
molecular wave functions. From the computational standpoint, these differences
translate into one additional truncation of an infinite sum beyond the atamic
calculation. In our calculations this truncation is fully justified with a
demonstrated convergence. Aside from this point, all computations are carried
out to the same degree of refinement as the corresponding electron-atom

problems.
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II. GENERAL THEORY
The development of the close-coupling theory dates back to the

1950'.'..12 Since then this method has been applied with increasing frequency

13-17

to electran-atom problems, so that the general theory of the close-
coupling method is rather well known now. Nevertheless, for the purpose of
3 later discussions, we specialize it to electron-diatomic molecule collision
| processes which result in an excitatiop of electronic states. The formulation
here parallels closely to those already published in conjunction with electron-

] K atom case, particularly, the work by Smith, Henry, and Burke. 14

% In the field of electron-molecule collision, when an excitation is made
from one electronic state to another, we are interested in the excitation cross
‘ sections that are averaged over the initial rotational substates, and summed over the
final rotational substates. In order to compute such cross secticns, it is
possible — in fact desirable fram the computational point of view — to

21,22

formulate the problem in the molecule-fixed frame of reference, thereby

ignoring the rotational structure completely. However, in its stead, we

average the direction of the incident electron with respect to the orientation
of molecule. Only assumption needed here is that the energy of scattered
electrons be much greater than energy-spacings of the rotational states. +

As to the treatment of the vibrational motion, it is a common practice

to use the Franck-Condon-factor (FC) approximation, by which electronic states |1
of molecules are considered '‘vibrationless.'" This simplifies the calculation,
since the vibrational wave functions now enter the computation only through

FC factors so that the scattering equations can be solved without the 1
knowledge of vibrational motion. The validity of this approximation .

has been examined.> In this report we will focus our attention to the

electronic motion and ignore the !
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dependency of electronic functions on the internuclear distance. Thus, in what
follows, all electronic functions are those corresponding to the equilibrium
separation of a ground state.

An electronic state of a diatomic molecule is defined by the angular
momentum along the molecular axis A, and the spin (sm). We use n to distinguish
different states which have the same quantum numbers (Asm). Thus, we write an

N-electron electronic wave function as

O(nAsml'il,...,iN), (1)

where ;i represents the spatial ('xti) and spin (oi) coordinates of the i-th
electron. ¢'s are fully antisymmetrized products consisting of one-electron
molecular orbitals d’j (nJ.AJ. |?) with a- or B-spin, and they are assumed to satisfy

the Schroedinger equation exactly,

H o 0(ism) = E_,¢(mAsm), (2)
N
S > & -1 . -1
o1 if{”vi MU Y )
N-1 N
R A S 3
i=1 j=i+1 1t J

where Z is the nuclear charge, and ;A and ;B are the position vectors of the
two nuclei. The scattered-electron wave is characterized by angular momenta
(um') and spin (s=%, m=t}).

The essence of the close-coupling method consists of expanding the total
(N+1)-electron function of the collision system in terms of a suitable set of
basis functions. Due to the axially symmetric field in which these (N+1)
electrons move, the total angular momentum projected on the molecular axis

A=\+m' is a constant of the collision process.
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As we deal only with spin-independent Hamiltonians, the total spin (SM) are
good quantum numbers. In fact the cross sections are independent of M. &

Accordingly, we adopt a basis set which are eigenfunctions of (SMA), i.e.,

M -1, - SMA > e >
i wu X ):wMzs(xl'“.’rioi’.”’xN*l)

= I, C(s,5mMm|SDY, | (rO)€CsMm|0))
x 0(n>\sm|;1....,;i_1,§i*1,---,;N*l)- (4)

where C(j 1j 2"11m2|JM) is the Clebsch-Gordan coefficient, Y, 1is the spherical

£m
hannonic, and £ is a- or B-spin function. We also used two short-hand notations;
X! indicates that ri-coordinate is missing in the basis function as shown and the

channel index u = (n)\ll.).z3 The total (N+1)-electron wave function is now expanded

s . ki

in an explicitly antisymmetrized form as

T.» > SMA > -
¥ (Xpseee s Xyyg)= ZSMAuWu (Xp0eeeaXyey)s €))

and
o i-1 -1

G Gpeedyg) ® D8 DD G

QA -1
1P > g NS

u'

1

where 1~ Fu'u(r) are to be determined by solving the scattering equation

In this paper we will not consider the I_J_o_tm_d (N+1) -electron states in the expansion
of Eq. (5). Inclusion of such bound states allows for the possibility of
electron-capture into the target molecule,24 and would be essential in the

studies of resonance behaviors of excitation functions such as in Ref. 20. We

seek the solution of the Schroedinger equation,

HEY Kp,e.ni%y,,) = 0, (7
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where the (N+l)-electron Hamiltonian H is

H = By W * VG ®)
* > -1 o |
VG erByg) = 2 (T Ty 17+ [Tpfygl )

N -+ > -1
+ I (gl 9)
In lieu of Eq. (7) we apply the variational principle to the integral (a

standard prescription here),

> - SMA* > - T » - =
8fax . iy, BT (Xpseees Xy JIHEIY (X, Xy ) = 0, (10)

with a subsidiary condition that the scattered-electron functions be orthogonal

to all the relevant target one-electron orbitals ¢j. (Imposition of this orthogonal-
ity condition precludes the possibility of electron capture into those orbitals.)
For electron-atom problems, because of the spherical symmetry of the target,

this is equivalent to requiring orthogonality between the scattered radial

functions r.lFu.u and the target orbitals of the same &. This orthogonality

relation offers a great deal of simplification to the scattering equations. For
molecular systems, the requirement of r'lFu,u being orthogonal to the relevant
molecular orbitals would certainly ensure the orthogonality of the colliding-
electron wave function to the target states, but the former is somewhat more
stringent than the latter. However, in this work we adopt the former version

in order to take advantage of the simplification in handling the exchange terms

in the scattering equation, i.e.,zs

f o3 1D Y, 4 (0 By (D]GF = 0. (an
Upon expanding

¢J-(njler) =T, \mj(r)dsj,g(njkjlr) ' (12)




Eq. (11) becomes

-1 2
zl 629’" GXJ.,A-A' I¢j’1(anJ‘|r) T Fnoxvzl(r)r dr 0, (13)

for all molecular orbitals ¢j(njxj|r). This orthogonality condition may be
treated by means of the Lagrangian undetemmined multiplier Mn .2 which amounts
323

J
to adding to Eq.(10), the following equation

8JT,Ty &g o0 ij,(A-A') Mnjsz 65 2 (nj3;11)
x v 1F (r)rzdr =0 14)
n'A'e’ 3
From Eqs. (10) and (14), we obtain the familiar set of integro-differential
equations,
2
- WO A A b T ;
[;2 _g—z_l + k ]Fuvu(r) ' zun[Uu'un(r) ¥ wu|un(r)]Funu(r)

T

5 ijzalx'ékj-(A-A')Mnjkj“¢i.2(“jxjlr)’

where the direct (U) and exchange (W) potentials are

Bonlnggd = [ e ®yv@ 0. 5)

& i i & - SUE SN

e SMA* N, -1
wu'u"(rN*l) Fu"u(rN*l) N f wu' (x )rN Funu(rN)

= et | wfﬂA(x'(N+1))d?1...d?&di§1 :

k2 . 2(B-E 1)) - (18)

We will not attempt to simplifydqs. (16) and (17) until we come to a
specific application. However, we point out here that these coupling
potentials vanish between channels of differing parity.zb Parity of a channel

(nx2) associated with (n\) electronic state may be defined as (-1)2 for "gerade"

o 5 et i v_“ e e T
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states'(zg,ng,...). and (-1)""'1 for '"ungerade'' states (Zu,nu,...). As & result,

the scattering equations separate into two sets according to even or odd parity
just as in an electron-atom collision problem. The solutions Fu'u(r) are subject

to the boundary conditions,

Fu'u(r) + 0, as r0

as T, (19)

1 -i(k'r-42'm) _i(k'r-4R'm) SMA
Fu'u(r) ~ ';'1; [Gulue € s\-"u]’

where Su'u is the scattering matrix. Following a similar analysis of Blatt

and Biedenharn,12 the scattering amplitude is

fSMA(nAEs - n'x'l's'lﬁ,;) = (kin) iz-z'Y2 X-k(ﬁ)
4 Xy on i T (20)

where the transition matrix T is

2
wu - Surw T Sy : (21)

~

The differential cross section in r-direction is

I(m\s > n'A's' |k, T)
2 N
- 4m 25+1) A A 2
2 sy T Vg4 (0 Yoy (0 ﬂx'z',nu' : (22)

Integration over the scattered angle yields a total cross section for a

given incident direction (k). As stated before, we are to average the cross

sections with respect to k, i.e.,
Q(ms + n'A's') = %? [ dk dr I(nis > n'A's'|k,T)

m
=T 5 (25+1 i 2
kKt S W‘%Ty Taggr | Trgﬁx'z',mz 1= (23)

For the purpose of later discussions, it is convenient to have cross sections

expressed as

aacian
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~

: 25+1) e s SMA 's'et) (28)
i i : ¥

! % 'A's' = 2 z z Q (nASR. -+ N A's ]
QUBAS > B'A'st) = bg 2TeH1) 2, g=|A-A| 2'=|A-A"]

‘ with

i

¢ SMA TSm ¢

E Q (HASf, +n'A's'e') = ':‘2 l n'a'e! ’mg" . (25)

In accordance with the FC approximation, Eq. (23) is viewed as the cross
section from any one vibrational level of (nis) to all vibrational levels of

(n'A's') state. Therefore, cross sections between a pair of vibrational levels

are to be scaled by the appropriate Franck-Condon factor o prgis i.e.,

Q(mAsv + n'A's'v') = . n,V,Q(n)\s +n'A's'),
(26)
Gy nryr = 1Py ® 3, OFR),

where (R) is the vibrational wave function of (nv) state.
Xnv

It is worthwhile to draw the contrast between the electron-atom and electron-
molecule systems. An obvious difference is that the electronic wave functions of a
diatomic molecule are centered around two nuclei. This causes difficulty in
camputing the coupling potentials, which will be discussed in Sec. IV-A. The
other point of practical interest is the following. In an electron-atom
collision, the scattering equations are diagonal in T- 1; + 1 and ML
(IA and ¥ being the angular momenta of the atom and scattered electron
respectively), and the cross sections are independent of ML' Accordingly, the

cross sections corresponding to Eq. (24) are (apart from the parity consideration)

given by

L+
atom (2s+1) + (2L+1 »
Q (nt,s +n'L's') = 217——%7- z —————l) I
a a S s*+1) 1=0 (22a+1 m=lL—2at
L+2} 27)

QLS(nlais * L _2's'),
2'=|L-2!| 3
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| Thus, once the number of target states (nt a) are decided on, one set of ;’
scattering equations corresponding to a given pair of L,ML are solved at

a time, yielding partial cross sections QLS. Further, for a given L,2 and '

e ———

are restricted to a finite number of values as shown in Eq. (27). Strictly

speaking, L runs from 0 to «». In practice, since the partial cross sections

QLS diminish with increasing L for large L, the series in Eq. (27) may be

terminated after suming a finite number of QLS for L=0,1,...L . The point

i
5

T
%]

we like to emphasize here is that Hmax is chosen - and may be increased later -
according to the knowledge of partial cross sections QLS already calculated for
L< ,

However, for the electron-excitation of molecule considered in this paper,

only A is a  good quantum number.27 Thus, the scattering equations for a given

A would in principle contain infinite number of channels corresponding to

£ = |[A-A], |A-)X[+2,....etc. as shown in Eq. (24). Again, truncation of channels
(with respect to &) is inevitable. However, in this case the truncation must

be made before the scattering equations are solved. In other words, whether or
not a sufficient number of channels were included in a calculation can be
ascertained only after the calculation had already been completed. This is an
additional burden in the calculation of molecular excitation. We will discuss

this further in Sec. III.
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i III. APPLICATION TO ELECI'RGI-HZ COLLISION

Within the theoretical framework outlined in the previous section, we

made a series of two-state close-coupling calculations by including the }

1 3z+ 3.+ 5 3

, b Zu, c Hu, and e Z; states.

ground state X Z; and each of the Blz+ a

u’ g
With the number of electronic states thus limited to two, we must still decide

how many partial waves (22') are to be included in a calculation, as pointed
out at the end of Sec. II. After some test calculations we found that for the
singlet-triplet excitation it is quite adequate to include three partial

waves or less per electronic state in the energy-range (up to 40 eV) of

ENP_So.  VEERAG. o | SAE e

incident electrons considered here. However, in the case of excitation to the
singlet state (Blz;), it appears that a very large number of partial waves
would be required. Therefore, we adopt the following practical scheme18 to

carry out the close-coupling calculations with a limited number of partial

waves while maintaining sufficient degree of accuracy.

|
i
g

L,
¥
1%
i

A. Special Treatment for Singlet-Singlet Excitation

ik

Let us denote the close-coupling (CC) cross section of (xlz; % BIZG)

excitation by

Q(CC) (B]-Z‘:) -5 ZA Q(CC)A(R,,Q') G (28)

22°

PRI e o PRV P B

This is a short-hand version of Eq. (24) with S=M=)% and s=s'=0. We assert

here that for sufficiently large (2,2'>L), Q(CC)A(Q,Q') approach the corres-

Q(Born)A

ponding partial cross sections (2,2') by the Born approximation.

16

Barnes, Lane, and Lin" verify this in their work on electron-Na collision

with a qualitative physical reason behind it. Therefore, we may calculate
Q@A (e,21) for (2,4')<L, and substitute QB™A(g,27) for QM A(z,21) for |

(2,2')>L, viz.,
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L

@l = £,z @A, 42 QU™ (g, 1)

Y1k TS R

(Born) L
= qrotal)+ 1 (£, [QCCO(,01) - @B™A o)1 (29)

We will substantiate this claim later.

B. Coupling Potentials

The electronic wave functions used in this work are as follows:
¢(X1£+' s=m=0) = [lo a(1l) lo B(2)]
g’ g g :

0(812;; s=me0) = /% {loa(l) 1o,8(2)] - [1o,8(1) loa(]},
(30)

3+- = = +
o(a zg, s=1,m=0) /E{[loga(l) 20ge(z)] [1083(1) 20ga(2)]},

Jet: SN
o(a Zg, s=m=1) [loga(l) ZOgG(Z)] ’

3 3 3

and similarly for b Z;, and ¢ IIu (A=t1) states with 20 replaced

+
o u’ e
respectively by 1°u’ Zcu, and 11ru (A=t1) orbitals. Here, we used the brackets
to represent the normalized determinants. The detailed form of the molecular
orbitals will be given later. The threshold energies of these states are listed
in Table I, which should be viewed in the context of FC approximation. Let us
consider a process in which an incident electron (s=ms=!:) impinges upon an H2
molecule in the ground state (s=ms=o). Consistent with this, we construct basis

functions as in Eq. (4), which are spin-eigenfunctions of S=M=4 with N=2. For
example, with the X1£; state we have

Hoas® ) = Yy 1 Eaends; smeo), (31)

i e ¢ 8 5o 3




1

and likewise for the B Zg state. In the case of 33£; we write

{
SMA -3 T 3.+ ¥: :

-«’%&(3)¢(a322; s=1, m=0)}. (32)

The basis functions associated with other triplet states are obtained similarly.

With these explicit expressions [Eqs. (30)-(32)], the potentials [Eqs. (16),

(17)] may be reduced to the following:

B lh) S8 B S W s e

where

vN

~ * ~ ~
mas,narers' M = Sy @y Jr Yo 40 Yo 40 ()
x (7,717 15,
and

A & A PN

vﬁxzs,n'x'z's'(’) =[dry, ,,@® Yo, a-x(®
£ £ [ o () | ey di (35)

R S e :

The Kronecker delta in Eq. (33) restricts the direct-coupling potentials to
those between channels belonging to electronic states of same spin, with the
obvious consequence that a singlet-to-triplet excitation is achieved only
through electron-exchange. The potential due to the nuclear charge W s
diagonal in electronic states as shown in Eq. (34). The part due to the

molecular electrons V€ is a sum of integrals involving one-electron molecular

orbitals (MO) ¢j’¢5 with numerical factors fj‘ Analogous to this, we find
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a2
= - ® b An "-" ‘1
Wt F (@) = L5 g5 [ 02 @Yg 4,0 (01 (71
xo1F) Y, (r) (rr')‘lpu,u,,(r') dr df' . (36)
For convenience we use short-hand notations
' = * -b' ->_->' -1 - ->' -bl 37
waﬁ I¢gr)hrl ¢3(x"dr (37)
0! 0.3 = f 0. @Y Y ) |F-71
g T
* W@ ) ¥ 400 ) ()R, W) dr d (38)

We display in Tables II-IV the coupling potentials between channels with
respect to the electronic states to which they belong.

In order to express these potentials more explicitly we use the following
well-known expansions, with the origin of the coordinate system chosen at the

center of homonuclear diatomic molecule as shown in Fig. 1. That is,

> >, - R A

™ = g D ® Yo® (39)
e RK A

T = g R0 G R Yeo® (40)
[X I S I P (41)
g T, “K “2K+I) r>) m 'K,m'T Tk,m' T

where R and R< stand for the greater or lesser of r and (R/2), and 1 and Te
for greater or lesser of r and r'. With these expansions we find
VN 2 L+
= . hX =
Mls,n'X'l'S'(r) 5(1“)’(““')(&) "l-lpl( even)

R, K
> cK(E'A-A',lA-A) (ﬁf : (42)
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Table vy, Step-size

of integration regiun:J

(A ér rB
0.0125 0.0125 1.0
1.0125 0.025 3.0
3.05 0.05 7.0
72 0.1 --

apA and rp are the starting and final points of

a region,
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Table VII. Partial cross sections? QA'O(R.,!.') in ag defined as in Eq. (25

for the bsl'.; state at E = 15 eV.

.181(-1) .779(-4) .181(-7)
.413(0) .129(-1) .913(-5)

.583(-2) .120(-3) .180(-7)
.319(-2) .735(-3) .317(-9)

.138(-4) .368(-4) .147(-6)
.768(-4) «597(-5) . 305(-5)

3Numbers in the parentheses indicate the power of 10.




3.+
Eq.(25) for the b L, State at E = 40 eV.

| Table VIII. Partial cross sections? QA=1(2’2,) in ag defined as in

2 1 2 3 4 5

3

1 .250(-2) .448(-5)

2 .475(-1) .244(-2) .308(-5)
3 .102(-1) .481(-3)

4 .278(-4) .145(-2) .675(-4)
5 .372(-5) .192(-3)

Numbers in the parentheses indicate the power of 10,

72




Table IX. Partial cross sections QA(bSZL) in ag

defined as in Eq.(69) at E = 15 and 40 eV,

A
Q
A E =15 eV E = 40 eV
0 .454019 .077405
1 .271013 .064906
2 .002737 .006672
3 .000038 .000721
sum? 1.001595 0.222003

LI Ry | : 3
Q "= Q "(A#0) are included in the sum.
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Table XI. Partial cross sectionsaQ(E,z') defined as in Eq.(71) for the

gl

+ E 2
Zu state at E = 25 eV in a.

s Al e Mo ikl VS8 i o

Q(L,2'=2-1) Q2,2 '=2+1)

L CC CCNE Born CC CONE Born

0 .355(-2)  .671(-3)  .887(-2)
1 .287(-1) .943(-1) .370(0) .329(-1) .161(-1) .159(-3)
2 .184(0) .468(0) .605(0) .248(-1) .169(-1) .320(-2)
3 .378(0) .674(0) .533(0) .213(-1) .162(-1) .341(-2)
4 .351(0) .432(0) .360(0) «639(-2) .738(-2) .239(-2)
5 .234(0) .238(0) .217(0) .416(-2) .295(-2) .124(-2)
6 .114(0) .126(0) .122(0) .912(-3) .107(-2) .687(-3)
7 .685(-1) .660(-1) .676(-1) .384(-3) .344(-3)
8 .347(-1) .364(-1)

Numbers in the parentheses indicate the power of 10.




Table XII. Partial cross sections® Q(2,%') defined as in Eq.(71) for the

i " s 2
B z;u state at E = 100 eV in ao.

Q(L,2'=2-1) Q(R,2'=2+1)

CCNE CcC CONE Born

o

.948(-3) .111(-2) .127(-2)
.763(-2) .102(-1) 113(-1) .441(-2) .113(-2) .987(-4)
.197(-1) .146(-1) .334(-1) .625(-2) .192(-2) .405(-3)
.223(-1) .349(-1) .583(-1) .574(-2) .498(-2) .198(-2)
.437(-1) .616(-1) +791(-1) .576(-2) .758(-2) .368(-2)
.667(-1) .863(-1) .920(-1) .118(-1) .870(-2) .488(-2)
.887(-1) .911(-1) .975(-1) +795(-2) .858(-2) .536(-2)
.943(-1) .935(-1) .967(-1) «133(-2) .532(-2)

.890(-1) .920(-1)

1
2
3
4
S
6
7
8

INumbers in the parentheses indicate the power of 10.




Table XIII. Total cross sections of the Bl‘}:; state in

units of 10”17 anz.
Energy cC CONE Born BO
(eV)
2S 4,31 6.31 6.66 531
SO 4,71 5.41 5.55 5.14
75 4.09 4.30 4,55 4,36
100 3.58 3.69 3.87 3.76
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A

Fig. 1. Coordinate system showing the expansions of IF-i:'['l, fi:A-I:['l, and

|¥B-?|'1.




‘1. 2. Gaussian-type orbitals in the Cartesian and spherical coordinate

vstoms,
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Fig. 3. Excitation cross sections of the be:l state calculated by means of
(i) the close-coupling (solid line) of this work; (ii) the Born-Rudge approxi-
mation (uniform dashed line) in Ref. 3; (iii) DW RPA reduced to one-half
(long-short dashed line) in Ref. 11.
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Fig. 4. Excitation cross sections of the o3x; state calculated by
means of (i) close-coupling (solid line) of this work; (ii) the Born-

Rudge approximation (dashed line) in Ref. 3.
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Fig. 5. Excitation cross sections of the as):* state calculated by
means of (i) close-coupling (solid line) of this work; (ii) the Born-
Rudge approximation (uniform dashed line) in Ref. 3; (iii) DW-RPA
(long-short dashed line) in Ref. 11.
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Fig. 6. Excitation cross sections of the c n, state calculated by means
of (i) the close-coupling (solid line) of this work; (ii) the Born-Rudge
approximation (dashed line) in Ref. 3.
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dissociation process stv H(1s) + H(1s) as compared with experimental
values (dashed line) of Ref. 32 corrected to represent the production of
H(1s) atoms only as described in Ref. 3.
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Fig. 8. Excitation cross sections of the B
(i) the close-coupling with exchange (solid line): (ii) the close-coupling
without exchange (uniform dashed line); (iii) the Born approximation (long-
short dashed line); (iv) the Born-Ochkur approximation (long-short-short
dashed line).
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PART III

ELECTRON IMPACT DISSOCIATION OF THE 02
MOLEQULE VIA THE SCHUMANN-RUNGE SYSTEM




87

I. INTRODUCTION

Inelastic collisions of electrons and molecules with resulting excitation
and dissociation of molecules constitute a very basic kind of processes in
many different phenomena. The importance of the 02 molecules in the
atmospheric physics has long been recognized.1 More specifically, the
Schumann-Runge system of 02, to which this part of the report is directed,
has been extensively studied experimentally, both by the optica12'4 and

electron-energy loss spectroscopy.s’6

The upper state of the Schumann-Runge
system is the lowest dipole-allowed excited state, and it is a repulsive
state which dissociates into O(SP) and O(ID) atoms (see Fig. 1). Thus, the
continua of this system is responsible for dissociation of O2 in the earth's
upper atmosphere by UV absorption of the solar radiation. The 0, molecule
may also be dissociated by electron-impact. In spite of the importance of
such processes, systematic theoretical studies based on the first principle
calculations are sparse in the literature, and do not exceed the stages of
the optical oscillator strength.7 The very complicated numerical procedures
required to evaluate the multicenter integrals had been the major source of
difficulty. However, with the introduction of the Gaussian type orbitals
(GTO) to the molecular wave functions, the evaluation of the multicenter
integrals has become a rather simple task, and the advantage of using GTO
for calculating excitation cross sections hes been amply demonstrated by
the cases of H,, Ny, and CO molecules. 510
An additional complication arises in the theoretical studies of 0,
molecule in contrast with other atmospheric molecules cited above. That is,

the ground state of 0, has an incompletely filled shell. Therefore, a single-

configuration wave function is not adequate in describing the molecular wave

|
|
|
r
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function, and one must employ multiconfiguration (MC) wave functions. We
shall examine in some detail the effect of the configuration-mixing on the
cross sections. Because of this additional complexity, our report will be
confined to the level of the Born-type calculation. As with the N, and Q0

2
8,9 we shall rely on the Ochkur'sn modified version of the Born

molecules,
approximation, and present the dissociation cross sections of the 02 molecule

from the threshold to 1000 eV of the incident-electron energy.
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II. THEORY

A theoretical formulation for the problem of electron excitation/
dissociation of diatomic molecules by electron impact has been presented in
Ref. 10 and Part I of this report. In this section the key steps will be
sketched only. We are concerned with calculation of excitation cross
sections to an excited state characterized by electronic and vibrational
quantum numbers (nW) from the ground electronics-vibrational state (00).
It should be noted that the upper state of the Schumann-Runge system

B3

}:; state is a repulsive state, so that the ''vibrational states'" are in

fact continua. Molecular rotation will not be included explicitly in the
formulation, but its effect will be taken into account by averaging the cross
sections over the relative orientation between the molecular axis and the
direction of incident electron. The total wave functions of molecule are
written as a product of the vibrational part x(R) and the electronic part
v(?l,?z,...,ﬁ). It is convenient to couple the molecular wave functions with
the spin of the colliding electrons to form a set of basis functions, fram
which the direct-excitation (Born approximation) and the exchange-excitation
(Ochkur's versionu) collision amplitudes can be calculated. We assume

this has been done. Then the transition amplitude is

N
e (KGR, ,0) = -f voEF,,. 0 ,ﬁ).zlexp(ii-i"i)
1.

vo(?l,?z, " .?N,ii) d?ld?z. i .d‘fN. Q)

The differential cross sections in (8¢) direction for excitation from the

ground (00) to the upper (nW) state are

BRI RS S S /. ¢ %

R ——

TORRR IR o 0 P

.

o

e




T(0:9) = (o u/nk ) [ [xyRx, (R

@2k 2)e(K,R,0,0)|% R%R singdade @)

where ©y is the degeneracy of the excited state. Integration of the differential
Cross sections over (8¢) gives the cross section for excitation to a unit energy

range about W of the repulsive state, viz.,

Q(00+nW) = [ I ,.(8,¢) sinededs . 3)

It follows that the cross sections of the entire repulsive state, irrespective

of the continuum levels are
Q(0+n) = [ Q(N0+nW) dW. 4)
o

Another quantity of physical significance is the generalized oscillator

strengths, which are related to the transition amplitude of Eq. (1) as
Fon(GR) = (2WaE/4nk?) [ |e (K,R8,8)| x sinédede, ()

where AE is the vertical excitation energy in a.u. (1 a.u. = 27.2 eV). In

particular, the optical oscillator strengths,
£fn(R) = F_ (K=0,R) (6)

are closely related to the photodissociation processes of the 0, molecule

'
via the Schumann-Runge (st g- - Bszu') system. From the foregoing discussion,
it is clear that the transition amplitude e - in Eq. (1) governs the accuracy
of the theoretical calculation that follows, be it the excitation cross
section or photodissociation cross section.

In the usual approach of writing wave functions as an antisymmeterized

products of one-electron functions ¢, if the wave functions in Eq. (1) are




considered to be single-configuration functions, Eq.(1) reduced to

eon (RO, = - [ o3 Rep(ik-Ho; G0, )

where % and ¢j are the pair of '"active' electron-functions. As we mentioned
in Sec. I, a single-configuration functions are not sufficient in the case
of the 02 molecule; therefore, we adopt the wave functions in Eq. (1) in the

form of multi-configuration (MC) functions, viz.,

3
wo(fl,?z,...,n) =1 3;(R) wi(rl,?z,...,n) (8)

<> &> > >
‘i’n(rl,rz,...,R) 3. bj (R) wj (rl,rz,...,R) 9

J

where wi, u;j are the single-configuration wave functions, and a;, bj are the
configuration-mixing coefficients. The details of computing these MC wave
functions will be presented in Sec. III. In this scheme of using MC wave

functions, the transition amplitude becomes

e (KR,©,0) = - Rb; (R [o; G, N ep(k-D) o;GRE ,  (10)

v sle &
1, 1,) 1

where Aij = 1, if the antisymmeterized product vy differ by one one-electron

I

orbital fram that of wj, i.e., o5 and °j respectively; otherwise Aij = 0.

Corresponding to this, the optical oscillator strength may be computed by

substituting Eq. (10) into (5), and taking the limiting value as K+0, with
the result,

Fon(®) = (20 8E/3) | 1y 5 a4

ij a; (R) bj (R)

[ oGR 2 oD &F|% : (1)

For the purpose of studying the effects of configuration mixing, it is

sufficient to examine the dipole transition amplitude, i.e.,
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T =1 850, (b ¢;(?,§)z o, (7, Rdt (12)

In Sec. IV we shall examine in detail how z varies and converges as we include
more and more configurations.

As shown in Eqs. (6) and (11), the optical oscillator strength varies
with the internuclear separation R. Therefore, in order to obtain the
optical oscillator strength of the entire Schumann-Runge system, we must

integrate f on(R) with the vibrational functions x(R), i.e.
2
fop = IR1 Rr x(X|R)f_ (R)x(BIR) . (13)

In principle R1 and R2 should be 0 and =, but since x's are localized so that

finite limits may be used.




